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2 Scaling

Figure 2.1. Strange shape with area A.

Figure 2.2. Same shape as Figure 2.1

but with dimensions enlarged by 1.5.

What is its area?

Figure 2.3. Figure 2.1 with a grid un-

derneath. Counting squares gives an

area of roughly 15 grid squares.

In most of the previous examples, we used opportunistic tricks to

determine what numbers to multiply together. We now introduce a

new method, scaling, for problems where simple multiplication is not

sufficient. Instead of explaining what a scaling argument is, we first

make one, and then explain what we did. The fastest way to learn a

language is to hear and speak it. Physics is no exception; you hear it

in the examples, and you speak it in the exercises.

2.1 Geometry

The shape in Figure 2.1 has an area A. If all its dimensions are in-

creased by 1.5 to produce Figure 2.2, what is the new area? Let’s

first do it the silly way. We lay a grid under each object and count

squares, finding 15 squares for the small shape (Figure 2.3) and 36

for the large shape (Figure 2.4). With A = 15, the new area is

Anew =
36

15
A ≈ 2.4 × A. (2.1)

That’s the difficult method. Another method is to scale the area.

Every length increased by a factor of 1.5, and A ∝ l2, so the area in-

creased by a factor of 1.52 = 2.25. This result is close to the estimate

of 2.4 in (2.1), or as close as one could expect by counting squares.

Furthermore, in spite of being derived from a proportionality, an al-

legedly approximate relation (where’s the equals sign?), the factor

of 2.25 is exact. As a bonus, this scaling method is also easier than

counting squares. We introduce the idea in this geometry example,

where it is so obviously painful, or painfully obvious, that one should

compare the new quantity to a known one rather than working out it

out from scratch. Now for a physics example of the same moral.

2.2 Gravity on the moon

What is acceleration due to gravity on the surface of the moon?

First, we guess. Should it be 1 cm s−2, or 106 cm s−2, or perhaps

103 cm s−2? They all sound reasonable, so we make the guess of least

resistance—that everywhere is like our local environment—and say

that gmoon ∼ gearth, which is 1000 cm s−2. Now we will make a sys-

tematic estimate.

This method that we use eventually shows you how to make esti-

mates without knowing physical constants, such as the gravitational
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m

F

R

Density ρ
Mass M

M ∼ ρR3

F =
GMm

R2
∝ ρRm

Figure 2.5. Order-of-magnitude astro-
nomical body. The body, which we ap-

proximate as a sphere, has radius R and

uniform density ρ. A block of mass m

sits on the surface and feels a gravi-

tational force F = GMm/R2, where

M ∼ ρR3 is the mass of the astro-

nomical body. The resulting accelera-

tion is g = F/m = GρR ∝ ρR; if ρ is

the same for all astronomical bodies in

which we’re interested, then g ∝ R.

Figure 2.4. Figure 2.2 with a grid un-

derneath. Counting squares gives an

area of roughly 36 grid squares.

constant G. First, we give the wrong solution, so that we can con-

trast it with the right—and simpler—order-of-magnitude solution.

The acceleration due to gravity at the surface of the moon is given

by Newton’s law of gravitation (Figure 2.5):

g =
F

m
=

GM

R2
. (2.2)

In the wrong way, we look up—perhaps in the thorough and useful

CRC Handbook of Chemistry and Physics [38]—M and R for the

moon, and the fundamental constant G, and get

gmoon ∼ 6.7 ·10−8 cm3 g−1 sec−2 ×7.3 ·1025 g

(1.7 ·108 cm)2
∼ 160 cm s−2. (2.3)

Here is another arithmetic calculation that you can do mentally, per-

haps saying to yourself, “First, I count the powers of 10: There are

17 (−8 + 25) powers of 10 in the numerator, and 16 (8 + 8) in the

denominator, leaving 1 power of 10 after the division. Then, I account

for the prefactors, ignoring the factors of 10. The numerator contains

6.7 × 7.3, which is roughly 7 × 7 = 49. The denominator contains

1.72 ∼ 3. Therefore, the prefactors produce 49/3 ∼ 16. When we

include one power of 10, we get 160.”

This brute-force method—looking up every quantity and then do-

ing arithmetic—is easy to understand, and is a reasonable way to get

an initial solution. However, it is not instructive. For example, when

you compare gmoon ∼ 160 cm s−1 with gearth, you may notice that

gmoon is smaller than gearth by a factor of only ∼ 6. With the huge

numbers that we multiplied and divided in (2.3), gmoon could easily

have been 0.01 cm s−2 or 106 cm s−2. Why are gmoon and gearth nearly

the same, different by a mere factor of 6? The brute-force method

shows only that huge numbers among G, M , and R2 nearly canceled

out to produce the moderate acceleration 160 cm s−2.

So we try a more insightful method, which has the benefit that we

do not have to know G; we have to know only gearth. This method is

not as accurate as the brute-force method, but it will teach us more

physics. It is an example of how approximate answers can be more

useful than exact answers.

We find gmoon for the moon by scaling it against gearth. [It is worth

memorizing gearth, because so many of our estimations depend on its
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value.] We begin with (2.2). Instead of M and R, we use density ρ and

radius R as the independent variables; we lose no information, because

we can compute density from mass and radius (assuming, as usual,

that the astronomical body has the simplest shape: a sphere). We

prefer density to mass, because density and radius are more orthog-

onal than mass and radius. In a thought experiment—and order-of-

magnitude analyses are largely thought experiments—we might imag-

ine a larger moon made out of the same type of rock. Enlarging the

moon changes both M and R, but leaves ρ alone. To keep M fixed

while changing R requires a larger feat of imagination (we shatter the

moon and use scaffolding to hold the fragments at the right distance

apart).

For a sphere of constant density, M = (4π/3)ρR3, so (2.2) becomes

g ∝ ρR. (2.4)

This scaling relation tells us how g varies—scales—with density

and radius. We retain only those variables and factors that change

from the earth to the moon; the proportionality sign ∝ allows us to

eliminate constants such as G, and numerical factors such as 4π/3.

If the earth and moon have the same radius and the same average

density of rock, then we can further simplify (2.4) by eliminating ρ

and R to get g ∝ 1. These assumptions are not accurate, but they

simplify the scaling relation; we correct them shortly. So, in this simple

model, gmoon and gearth are equal, which partially explains the modest

factor of 6 that separates gmoon and gearth. Now that we roughly

understand the factor of 6, as a constant near unity, we strive for more

accuracy, and remove the most inaccurate approximations. The first

approximation to correct is the assumption that the earth and moon

have the same radius. If R can be different on the earth and moon,

then (2.4) becomes g ∝ R, whereupon gearth/gmoon ∼ Rearth/Rmoon.

What is Rmoon? Once again, we apply the guerrilla method. When

the moon is full, a thumb held at arms length will just cover the

moon perceived by a human eye. For a typical human-arm length

of 100 cm, and a typical thumb width of 1 cm, the angle subtended

is θ ∼ 0.01 rad. The moon is L ∼ 4 · 1010 cm from the earth, so its

diameter is θL ∼ 0.01L; therefore, Rmoon ∼ 2 · 108 cm. By contrast,

Rearth ∼ 6 · 108 cm, so gearth/gmoon ∼ 3. We have already explained

a large part of the factor of 6. Before we explain the remainder, let’s

estimate L from familiar parameters of the moon’s orbit. One of the

goals of order-of-magnitude physics is to show you that you can make

many estimates with the knowledge that you already have. Let’s ap-

ply this philosophy to estimating the radius of the moon’s orbit. One

familiar parameter is the period: T ∼ 30 days. The moon orbits in

a circle because of the earth’s gravitational field. What is the effect

of earth’s gravity at distance L (from the center of the earth)? At

distance Rearth from the center of the earth, the acceleration due to
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gravity is g; at L, it is a = g(Rearth/L)2, because gravitational force

(and, therefore, acceleration) are proportional to distance−2. The ac-

celeration required to move the moon in a circle is v2/L. In terms of

the period, which we know, this acceleration is a = (2πL/T )2/L. So

g

(
Rearth

L

)2

︸ ︷︷ ︸

agravity

=

(
2πL

T

)2
1

L
︸ ︷︷ ︸

arequired

. (2.5)

The orbit radius is

L =

(
gR2

earthT 2

4π2

)1/3

∼
(

1000 cm s−2 × (6 ·108 cm)2 × (3 ·106 sec)2

40

)1/3

∼ 5 ·1010 cm,

(2.6)

which closely matches the actual value of 4 ·1010 cm.

Now we return to explaining the factor of 6. We have already

explained a factor of 3. (A factor of 3 is more than one-half of a

factor of 6. Why?) The remaining error (a factor of 2) must come

largely because we assumed that the earth and moon have the same

density. Allowing the density to vary, we recover the original scaling

relation (2.4). Then,

gearth

gmoon

∼ ρearth

ρmoon

Rearth

Rmoon

. (2.7)

Typically, ρcrust ∼ ρmoon ∼ 3 g cm−3, whereas ρearth ∼ 5 g cm−3 (here,

ρcrust is the density of the earth’s crust).

Although we did not show you how to deduce the density of moon

rock from well-known numbers, we repay the debt by presenting a

speculation that results from comparing the average densities of the

earth and the moon. Moon rock is lighter than earth rock; rocks in the

earth’s crust are also lighter than the average earth rock (here “rock”

is used to include all materials that make up the earth, including the

core, which is nickel and iron); when the earth was young, the heavier,

and therefore denser, elements sank to the center of the earth. In fact,

moon rock has density close to that of the earth’s crust—perhaps

because the moon was carved out of the earth’s crust. Even if this

hypothesis is not true, it is plausible, and it suggests experiments

that might disprove it. Its genesis shows an advantage of the scaling

method over the brute-force method: The scaling method forces us to

compare the properties of one system with the properties of another.

In making that comparison, we may find an interesting hypothesis.

Whatever the early history of the moon, the density ratio con-

tributes a factor of 5/3 or roughly 1.7 to the ratio (2.7), and we get

2006-01-09 15:40:38 [rev c0027f05b4fd]



2. Scaling 21

gearth/gmoon ∼ 3 × 1.7 ∼ 5. We have explained most of the factor of

6—as much of it as we can expect, given the crude method that we

used to estimate the moon’s radius, and the one-digit accuracy that

we used for the densities.

The brute-force method—looking up all the relevant numbers in a

table—defeats the purpose of order-of-magnitude analysis. Instead of

approximating, you use precise values and get a precise answer. You

combine numerous physical effects into one equation, so you cannot

easily discern which effects are important. The scaling method, where

we first approximate the earth and moon as having the same density

and radius, and then correct the most inaccurate assumptions, teaches

us more. It explains why gmoon ∼ gearth: because the earth and moon

are made of similar material and are roughly the same size. It explains

why gmoon/gearth ≃ 1/6: because moon rock is lighter than earth rock,

and because the moon is smaller than the earth. We found a series of

successive approximations:

gmoon ∼ gearth,

gmoon ∼ Rmoon

Rearth

gearth,

gmoon ∼ ρmoon

ρearth

Rmoon

Rearth

gearth.

(2.8)

Since the approximations each introduce only one physical effect, they

are easy to understand. Another benefit of the scaling method is that

it can suggest new theories or hypotheses. When we considered the

density of moon rock and earth rock, we were led to speculate on the

moon’s origin from the earth’s crust. Order-of-magnitude reasoning

highlights the important factors, so that our limited brains can digest

them, draw conclusions from them, and possibly extend them.

2.3 Collisions

Imagine that you work for a government safety agency testing how

safe various cars are in crashes. Your budget is slim, so you first

crash small toy cars, not real cars, into brick walls. (Actually, you

might crash cars in computer simulation only, but, as the order-of-

magnitude analysis of computer programs is not the topic of this

example, we ignore this possibility.) At what speed does such a crash

produce mangled and twisted metal? Metal toy cars are still available

(although hard to find), and we assume that you are using them.

For an initial guess, let’s estimate that the speed should be 50mph

or 80 kph—roughly the same speed that would badly mangle a real

car (mangle the panels and the engine compartment, not just the

fenders). Why does a crash make metal bend? Because the kinetic

energy from the crash distorts the metallic bonds. We determine the
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L

v Brick wall

Figure 2.6. Order-of-magnitude car
about to hit a brick wall. It hits with

speed v, which provides kinetic energy

∼ Mv2, where M is the mass of the car.

The energy required to distort a fixed

fraction of the bonds is proportional to

the number of bonds. If toy and real cars

are made of the same metal, then the

number of atoms, and the total bond-

distortion energy, will be proportional

to M , the mass of the car. The avail-

able kinetic energy also is proportional
to M , so the necessary crash velocity is

the same at all masses, and, therefore,

at all sizes.

necessary crash speed using a scaling argument.

Figure 2.6 shows a car about to hit a brick wall. In an order-of-

magnitude world, all cars, toy or real, have the same proportions, so

the only variable that distinguishes them is their length, L. (Because

we are assuming that all cars have the same proportions, we could

use the width or height instead of the length.) The kinetic energy

available is

Ekinetic ∼ Mv2. (2.9)

The energy required to distort the bonds is

Erequired ∼ M

matom
︸ ︷︷ ︸

no. of atoms

× ǫc × f, (2.10)

where ǫc is the binding, or cohesive, energy per atom; and f is a

fractional fudge factor thrown in because the crash does not need

to break every bond. We discuss and estimate cohesive energies in

Section 4.2.2; for now, we need to know only that the cohesive energy

is an estimate of how strong the bonds in the substance are. Let’s

assume that, to mangle metal, the collision must break a fixed fraction

of the bonds, perhaps f ∼ 0.01. Equating the available energy (2.9)

and the required energy (2.10), we find that

Mv2 ∼ M × ǫc

matom

× f. (2.11)

We assume (reasonably) that ǫc, f , and matom are the same for all

cars, toy or real, so once we cancel M , we have v ∝ 1. The required

speed is the same at all sizes, as we had guessed.

Now that we have a zeroth-order understanding of the problem,

we can improve our analysis, which assumed that all cars have the

same shape. The metal in toy cars is proportionally thicker than the

metal in real cars, just as roads on maps are proportionally wider than

real roads. So a toy car has a larger mass, and is therefore stronger

than the simple scaling predicts. The metal in full-size cars mangles

in a 80 kph crash; the metal in toy cars may survive an 80 kph crash,

and may mangle only at a significantly higher speed, such as 200 kph.
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m

m

h Ejump ∼ mgh

Figure 2.7. Jumping animal. An ani-

mal of mass m (the block) stores energy

in its muscles (the compressed, mass-

less spring). It uses the energy to jump

a height h off the ground. The energy
required is Ejump ∼ mgh.

Our solution shows the benefit of optimism. We do not know the

fudge factor f , or the cohesive energy ǫc, but if we assume that they

are the same for all cars, toy or real, then we can ignore them. The

moral is this: Use symbols for quantities that you do not know; they

might cancel at the end. Our example illustrated another technique:

successive approximation. We made a reasonable analysis—implicitly

assuming that all cars have the same shape—then improved it. The

initial analysis was simple, and the correction was almost as simple.

Doing the more accurate analysis in one step would have been more

difficult.

2.4 Jump heights

We next apply scaling methods to understand how high an animal

can jump, as a function of its size. We study a jump from standing

(or from rest, for animals that do not stand); a running jump depends

on different physics. This jump-height problem also looks underspec-

ified. The height depends on how much muscle an animal has, how

efficient the muscles are, what the animal’s shape is, and much else.

So we invoke another order-of-magnitude method: When the going

gets tough, lower your standards. We cannot easily figure out the

absolute height; we estimate instead how the height depends on size,

leaving the constant of proportionality to be determined by experi-

ment. First we develop a simple model of jumping; then in Section 2.5

we consider physical effects that we neglected in the crude approxi-

mations.

We want to determine only how jump height scales (varies) with

body mass. Even this problem looks difficult; the height still depends

on muscle efficiency, and so on. Let’s see how far we get by just plowing

along, and using symbols for the unknown quantities. Maybe all the

unknowns cancel. We want an equation for the height h, such as

h ∼ f(m), where m is the animal’s mass. Jumping requires energy,

which must be provided by muscles. [Muscles get their energy from

sugar, which gets its energy from sunlight, but we are not concerned

with the ultimate origins of energy here.] If we can determine the

required energy, and compare it with the energy that all the muscles

in an animal can supply, then we have an equation for f . Figure 2.7

shows a cartoon version of the problem.

A jump of height h requires energy Ejump ∼ mgh. So we can write

Ejump ∝ mh. (2.12)

The ∝ sign means that we do not have to worry about making the

units on both sides match. We exploited this freedom to get rid of the

irrelevant constant g (which is the same for all animals on the earth,

unless some animal has discovered antigravity). The energy that the

animal can produce depends on many factors. We use symbols for each
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Click beetle

Locust
Human
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Figure 2.8. Jump height versus body

mass. This graph plots the data in Ta-

ble 2.1. Notice the small range of vari-

ation in height, compared to the range

of variations in mass. The mass varies

more than 8 orders of magnitude (a fac-

tor of 108), yet the jump height varies

only by a factor of 3. The predicted scal-

ing of constant h (h ∝ 1) is surprisingly

accurate. The largest error shows up at
the light end; fleas and beetles do not

jump as high as larger animals, due to

air resistance.

Animal Mass (g) Height (cm)

Flea 0.5 ·10−3 20
Click beetle 0.04 30

Locust 3 59

Human 7 ·104 60

Table 2.1. Jump height as a function of

mass. Source: Scaling: Why Animal Size

is So Important [55, page 178].

of these unknowns. First, the energy depends on how much muscle

an animal has. So we approximate by assuming that a fraction, α, of

an animal’s mass is muscle, and that all muscle tissue can store the

same energy density, E (we are optimists). Then, the energy that can

be stored in muscles is

Estored ∼ mαE ∝ m. (2.13)

Here we have derived a scaling relation, showing how energy stored

varies with mass; we used the freedom provided by ∝ to get rid of

α and E , presumed to be the same for all animals. Equating the

required energy from (2.12) with the available energy from (2.13), we

find that mh ∝ m, or that h ∝ 1; this proportionality says that h is

independent of mass. This result seems surprising. Our intuition tells

us that people should be able to jump higher than locusts. Table 2.1

shows measured jump heights for animals of various sizes and shapes;

the data are also plotted in Figure 2.8. Surprising or not, our result

is roughly correct.

2.5 Jump heights refined

Now that we have a crude understanding of the situation—that jump

height is constant—we try to explain more subtle effects. For example,

the scaling breaks down for tiny animals such as fleas; they do not

jump as high as we expect. What could limit the jump heights for tiny

animals? Smaller animals have a larger surface-to-volume ratio than

do large animals, so any effect that depends on the surface area is

more important for a small animal. One such effect is air resistance;

the drag force F on an animal of size L is F ∝ L2, as we show

in Section 3.4.3. The resulting deceleration is F/m ∝ L−1, so small

animals (small L) get decelerated more than big animals. We would

have to include the constants of proportionality to check whether the

effect is sufficiently large to make a difference; for example, it could

be a negligible effect for large animals, and 10 times as large for small

animals, but still be negligible. If we made the estimate, we would

find that the effect of air resistance is important, and can partially
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explain why fleas do not jump as high as humans. The constant jump

height also fails for large animals such as elephants, who would break

their bones when they landed if they jumped as high as humans.

You might object that treating muscle simply as an energy storage

medium ignores a lot of physics. This criticism is valid, but if the basic

model is correct, it’s simpler to improve the model one step at a time,

instead of including every effect in the early stages. As an example

of successive refinement, let’s consider the power requirements for

jumping. How does the power required scale with animal size, and do

limitations on power prevent animals from attaining their theoretical

jump height?

Power is energy per time; in this case, it is energy required for the

jump divided by time during which the energy is released. In (2.12)

we found that E ∝ mh; because h is constant, E ∝ m. [Successive

refinement, which we are doing here, depends on an at least rudimen-

tary understanding of the problem. If we had not already solved the

problem crudely, we would not know that E ∝ m or that h ∝ 1.]

We now need to estimate the time required to release the energy,

which is roughly the time during which the animal touches the ground

while launching. Suppose that the animal blasts off with velocity v.

The animal squats to zero height, the clock starts ticking, and the

animals starts to push. At the end of the push, when the clock stops

ticking, the animal is moving with speed v; we assume that it moves

with the same speed throughout its launch (the rectangle assump-

tion). The clock, therefore, stops ticking at time τ ∼ L/v. The takeoff

speed v is roughly the same for all animals, because v ∝
√

gh ∝
√

h,

and h is roughly constant. So τ ∝ L.

How does the energy vary with L? We make the simplest assum-

ption—that all animals have the same density and the same cubical

shape. Then, E ∝ m, and m ∝ L3, so E ∝ L3.

From our estimates for the energy and the time, we estimate that

the power required is P ∼ E/τ ∝ L2. Per unit volume, the power re-

quired is Preq ∼ L−1. If there is a maximum power per unit volume,

Pmax, that an animal can generate, then sufficiently tiny animals—for

whom Preq is large—might not be able to generate sufficient power.

Click beetles overcome this problem by storing energy in their ex-

oskeleton, and jumping only after they have stored sufficient energy:

They increase the effective τ , and thus decrease Preq.

The analysis of this extreme case—tiny animals—and the analysis

of the power requirements show the value of making a simple analysis,

and then refining it. To complete the more detailed analysis, we re-

quired results from the simple analysis. If we had tried to include all

factors—such as air resistance, bone breakage, power consumption,

and energy storage—from the beginning, we would have cooked up a

conceptual goulash, and would have had trouble digesting the mess.
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The approximate model provides a structure on which we can build

the more detailed analyses.

2.6 What you have learned

Avoid computing a quantity from scratch. Rather, compare it to

a previously computed quantity.

Use proportionality relations. They allow you to ignore constants

that remain the same in two situations, so that the constants do

not clutter our thinking.

Imagine scaling a physical system up or down in size and consider

how the relevant parameters (area, volume, heat flow, power, etc.)

vary with size.

2.7 Exercises

◮ 2.7 Moment of inertia

How does moment of inertia scale with length (keeping density con-

stant)?

◮ 2.8 Spheres

If you double the radius of a 8-dimensional sphere (for comparison, the

earth is a 3-dimensional sphere), what happens to its surface ‘area’?

◮ 2.9 Mars year

How long is a ‘year’ on Mars (distance from sun ∼ 2.31011 m)?

◮ 2.10 Range

Imagine throwing a rock or kicking a ball, and neglect air resistance.

Keep the launch angle constant. How does the time in the air scale

with launch velocity v? How does time in the air scale with g, the

gravitational acceleration? Combine these two results to find how the

range scales with v and g and thereby deduce a dimensionally correct

formula (i.e. with the same dimensions on both sides, even if the

formula lacks a constant).

◮ 2.11 Bugs

Surface tension is force per length. Show that a small enough bug

(perhaps smaller than any existing bug!) can float on water.

◮ 2.12 Mountains

How does the maximum height of a (cubical!) mountain scale with

the radius of a planet?
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