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1 Wetting Your Feet

Most technical education emphasizes exact answers. If you are a physi-

cist, you solve for the energy levels of the hydrogen atom to six dec-

imal places. If you are a chemist, you measure reaction rates and

concentrations to two or three decimal places. In this book, you learn

complementary skills. You learn that an approximate answer is not

merely good enough; it’s often more useful than an exact answer.

When you approach an unfamiliar problem, you want to learn first

the main ideas and the important principles, because these ideas and

principles structure your understanding of the problem. It is easier to

refine this understanding than to create the refined analysis in one

step.

The adjective in the title, order of magnitude, reflects our em-

phasis on approximation. An order of magnitude is a factor of 10. To

be “within an order of magnitude,” or to estimate a quantity “to order

of magnitude,” means that your estimate is roughly within a factor

of 10 on either side. This chapter introduces the art of determining

such approximations.

Writer’s block is broken by writing; estimator’s block is broken by

estimating. So we begin our study of approximation using everyday

examples, such as estimating budgets or annual production of dia-

pers. These warmups flex your estimation muscles, which may have

lain dormant through many years of traditional education. After the

warmup, we introduce a more subtle method: scaling relations (Chap-

ter 2).

Everyday estimations provide practice for our later problems, and

also provide a method to sanity check information that you see. Sup-

pose that a newspaper article says that the annual cost of health

care in the United States will soon surpass $1 trillion. Whenever you

read any such claim, you should automatically think: Does this num-

ber seem reasonable? Is it far too small, or far too large? You need

methods for such estimations, methods that we develop in several

examples. We dedicate the first example to physicists who need em-

ployment outside of physics.

1.1 Armored cars

How much money is there in a fully loaded Brinks armored car?

The amount of money depends on the size of the car, the denom-

ination of the bills, the volume of each bill, the amount of air be-
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1. “Once at a Fourth-of-July celebra-

tion, a reporter wondered and later

asked why Mr. Murphy (he was always

Mr. Murphy even to his closest asso-

ciates) did not join in the singing of the
National Anthem. ‘Perhaps he didn’t

want to commit himself,’ the boss’s aide

explained.” From the Introduction by

Arthur Mann, to William L. Riordan,

Plunkitt of Tammany Hall (New York:

E. P. Dutton, 1963), page ix.

tween the bills, and many other factors. The question, at first glance,

seems vague. One important skill that you will learn from this text,

by practice and example, is what assumptions to make. Because we

do not need an exact answer, any reasonable set of assumptions will

do. Getting started is more important than dotting every i; make an

assumption—any assumption—and begin. You can correct the gross

lies after you have got a feeling for the problem, and have learned

which assumptions are most critical. If you keep silent, rather than

tell a gross lie, you never discover anything.

Let’s begin with our equality conventions, in ascending order of

precision. We use ∝ for proportionalities, where the units on the left

and right sides of the ∝ do not match; for example, Newton’s second

law could read F ∝ m. We use ∼ for dimensionally correct relations

(the units do match), which are often accurate to, say, a factor of 5

in either direction. An example is

kinetic energy ∼ Mv2. (1.1)

Like the ∝ sign, the ∼ sign indicates that we’ve left out a constant;

with ∼, the constant is dimensionless. We use ≈ to emphasize that the

relation is accurate to, say, 20 or 30 percent. Sometimes, ∼ relations

are also that accurate; the context will make the distinction.

Now we return to the armored car. How much money does it

contain? Before you try a systematic method, take a guess. Make it an

educated guess if you have some knowledge (perhaps you work for an

insurance company, and you happened to write the insurance policy

that the armored-car company bought); make it an uneducated guess

if you have no knowledge. Then, after you get a more reliable estimate,

compare it to your guess: The wonderful learning machine that is your

brain magically improves your guesses for the next problem. You train

your intuition, and, as we see at the end of this example, you aid your

memory. As a pure guess, let’s say that the armored car contains

$1 million.

Now we introduce a systematic method. A general method in many

estimations is to break the problem into pieces that we can handle:

We divide and conquer. The amount of money is large by every-

day standards; the largeness suggests that we break the problem into

smaller chunks, which we can estimate more reliably. If we know the

volume V of the car, and the volume v of a us bill, then we can count

the bills inside the car by dividing the two volumes, N ∼ V/v. After

we count the bills, we can worry about the denominations (divide and

conquer again). [We do not want to say that N ≈ V/v. Our volume

estimates may be in error easily by 30 or 40 percent, or only a frac-

tion of the storage space may be occupied by bills. We do not want

to commit ourselves.1]

We have divided the problem into two simpler subproblems: de-

termining the volume of the car, and determining the volume of a
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Figure 1.1. Interior of a Brinks ar-

mored car. The actual shape is irreg-

ular, but to order of magnitude, the

interior is a cube. A person can prob-

ably lie down or stand up with room

to spare, so we estimate the volume as

V ∼ 2 m × 2m × 2m ∼ 10m3.

2. “I seen my opportunities and I took

’em.”—George Washington Plunkitt, of

Tammany Hall, quoted by Riordan [53,

page 3].

bill. What is the volume of an armored car? The storage space in

an armored car has a funny shape, with ledges, corners, nooks, and

crannies; no simple formula would tell us the volume, even if we knew

the 50-odd measurements. This situation is just the sort for which

order-of-magnitude physics is designed; the problem is messy and un-

derspecified. So we lie skillfully: We pretend that the storage space

is a simple shape with a volume that we can find. In this case, we

pretend that it is a rectangular prism (Figure 1.1).

To estimate the volume of the prism, we divide and conquer. We

divide estimating the volume into estimating the three dimensions of

the prism. The compound structure of the formula

V ∼ length × width × height (1.2)

suggests that we divide and conquer. Probably an average-sized per-

son can lie down inside with room to spare, so each dimension is

roughly 2m, and the interior volume is

V ∼ 2m × 2m × 2m ∼ 10m3 = 107 cm3. (1.3)

In this text, 2 × 2 × 2 is almost always 10. We are already working

with crude approximations, which we signal by using ∼ in N ∼ V/v,

so we do not waste effort in keeping track of a factor of 1.25 (from

using 10 instead of 8). We converted the m3 to cm3 in anticipation of

the dollar-bill-volume calculation: We want to use units that match

the volume of a dollar bill, which is certainly much smaller than 1m3.

Now we estimate the volume of a dollar bill (the volumes of us

denominations are roughly the same). You can lay a ruler next to a

dollar bill, or you can just guess that a bill measures 2 or 3 inches by

6 inches, or 6 cm × 15 cm. To develop your feel for sizes, guess first;

then, if you feel uneasy, check your answer with a ruler. As your feel

for sizes develops, you will need to bring out the ruler less frequently.

How thick is the dollar bill? Now we apply another order-of-magnitude

technique: guerrilla warfare. We take any piece of information that

we can get.2 What’s a dollar bill? We lie skillfully and say that a

dollar bill is just ordinary paper. How thick is paper? Next to the

computer used to compose this textbook is a laser printer; next to

the printer is a ream of laser printer paper. The ream (500 sheets) is

roughly 5 cm thick, so a sheet of quality paper has thickness 10−2 cm.

Now we have the pieces to compute the volume of the bill:

v ∼ 6 cm × 15 cm × 10−2 cm ∼ 1 cm3. (1.4)

The original point of computing the volume of the armored car and

the volume of the bill was to find how many bills fit into the car:

N ∼ V/v ∼ 107 cm3/1 cm3 = 107. If the money is in $20 bills, then

the car would contain $200 million.
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The bills could also be $1 or $1000 bills, or any of the intermedi-

ate sizes. We chose the intermediate size $20, because it lies nearly

halfway between $1 and $1000. You naturally object that $500, not

$20, lies halfway between $1 and $1000. We answer that objection

shortly. First, we pause to discuss a general method of estimating:

talking to your gut. You often have to estimate quantities about

which you have only meager knowledge. You can then draw from your

vast store of implicit knowledge about the world—knowledge that you

possess but cannot easily write down. You extract this knowledge by

conversing with your gut; you ask that internal sensor concrete ques-

tions, and listen to the feelings that it returns. You already carry on

such conversations for other aspects of life. In your native language,

you have an implicit knowledge of the grammar; an incorrect sen-

tence sounds funny to you, even if you do not know the rule being

broken. Here, we have to estimate the denomination of bill carried by

the armored car (assuming that it carries mostly one denomination).

We ask ourselves, “How does an armored car filled with one-dollar

bills sound?” Our gut, which knows the grammar of the world, re-

sponds, “It sounds a bit ridiculous. One-dollar bills are not worth so

much effort; plus, every automated teller machine dispenses $20 bills,

so a $20 bill is a more likely denomination.” We then ask ourselves,

“How about a truck filled with thousand-dollar bills?” and our gut

responds, “no, sounds way too big—never even seen a thousand-dollar

bill, probably collectors’ items, not for general circulation.” After this

edifying dialogue, we decide to guess a value intermediate between $1

and $1000.

We interpret “between” using a logarithmic scale, so we choose

a value near the geometric mean,
√

1 × 1000 ∼ 30. Interpolating on

a logarithmic scale is more appropriate and accurate than is inter-

polating on a linear scale, because we are going to use the number

in a chain of multiplications and divisions. Let’s check whether 30 is

reasonable, by asking our gut about nearby estimates. It is noncom-

mittal when asked about $10 or $100 bills; both sound reasonable. So

our estimate of 30 is probably reasonable. Because there are no $30

bills, we use a nearby actual denomination, $20.

Assuming $20 bills, we estimate that the car contains $200 million,

an amount much greater than our initial guess of $1 million. Such

a large discrepancy makes us suspicious of either the guess or this

new estimate. We therefore cross-check our answer, by estimating

the monetary value in another way. By finding another method of

solution, we learn more about the domain. If our new estimate agrees

with the previous one, then we gain confidence that the first estimate

was correct; if the new estimate does not agree, it may help us to find

the error in the first estimate.

We estimated the carrying capacity using the available space. How
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3. It is unfortunate that mass is not a

transitive verb in the way that weigh

is. Otherwise, we could write that the

truck masses 10 tons. If you have more

courage than we have, use this construc-

tion anyway, and start a useful trend.

else could we estimate it? The armored car, besides having limited

space, cannot carry infinite mass. So we estimate the mass of the

bills, instead of their volume. What is the mass of a bill? If we knew

the density of a bill, we could determine the mass using the volume

computed in (1.4). To find the density, we use the guerrilla method.

Money is paper. What is paper? It’s wood or fabric, except for many

complex processing stages whose analysis is beyond the scope of this

book. Here, we just used another order-of-magnitude technique, punt:

When a process, such as papermaking, looks formidable, forget about

it, and hope that you’ll be okay anyway. Ignorance is bliss. It’s more

important to get an estimate; you can correct the egregiously inac-

curate assumptions later. How dense is wood? Once again, use the

guerrilla method: Wood barely floats, so its density is roughly that of

water, ρ ∼ 1 g cm−3. A bill, which has volume v ∼ 1 cm3, has mass

m ∼ 1 g. And 107 cm3 of bills would have a mass of 107 g = 10 tons.3

This cargo is large. [Metric tons are 106 g; English tons (may that

measure soon perish) are roughly 0.9 ·106 g, which, for our purposes,

is also 106 g.] What makes 10 tons large? Not the number 10 being

large. To see why not, consider these extreme arguments:

In megatons, the cargo is 10−5 megatons, which is a tiny cargo

because 10−5 is a tiny number.

In grams, the cargo is 107 g, which is a gigantic cargo because 107

is a gigantic number.

You might object that these arguments are cheats, because neither

grams nor megatons is a reasonable unit in which to measure truck

cargo, whereas tons is a reasonable unit. This objection is correct;

when you specify a reasonable unit, you implicitly choose a standard

of comparison. The moral is this: A quantity with units—such as

tons—cannot be large intrinsically. It must be large compared to a

quantity with the same units. This argument foreshadows the topic

of dimensional analysis, which is the subject of Chapter 3.

So we must compare 10 tons to another mass. We could compare

it to the mass of a bacterium, and we would learn that 10 tons is

relatively large; but to learn about the cargo capacity of Brinks ar-

mored cars, we should compare 10 tons to a mass related to transport.

We therefore compare it to the mass limits at railroad crossings and

on many bridges, which are typically 2 or 3 tons. Compared to this

mass, 10 tons is large. Such an armored car could not drive many

places. Perhaps 1 ton of cargo is a more reasonable estimate for the

mass, corresponding to 106 bills. We can cross-check this cargo esti-

mate using the size of the armored car’s engine (which presumably

is related to the cargo mass); the engine is roughly the same size

as the engine of a medium-sized pickup truck, which can carry 1 or

2 tons of cargo (roughly 20 or 30 book boxes—see Example 4.1). If the
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money is in $20 bills, then the car contains $20 million. Our original,

pure-guess estimate of $1 million is still much smaller than this esti-

mate by roughly an order of magnitude, but we have more confidence

in this new estimate, which lies roughly halfway between $1 million

and $200 million (we find the midpoint on a logarithmic scale). The

Reuters newswire of 18 September 1997 has a report on the largest

armored car heist in us history; the thieves took $18 million; so our

estimate is accurate for a well-stocked car. (Typical heists net between

$1 million and $3 million.)

We answered this first question in detail to illustrate a number of

order-of-magnitude techniques. We saw the value of lying skillfully—

approximating dollar-bill paper as ordinary paper, and ordinary paper

as wood. We saw the value of waging guerrilla warfare—using knowl-

edge that wood barely floats to estimate the density of wood. We

saw the value of cross-checking—estimating the mass and volume of

the cargo—to make sure that we have not committed a gross blun-

der. And we saw the value of divide and conquer—breaking volume

estimations into products of length, width, and thickness. Breaking

problems into factors, besides making the estimation possible, has

another advantage: It often reduces the error in the estimate. There

probably is a general rule about guessing, that the logarithm is in er-

ror by a reasonably fixed fraction. If we guess a number of the order

of 1 billion in one step, we might be in error by, say, a factor of 10. If

we factor the 1 billion into four pieces, the estimate of each piece will

be in error by a factor of γ = 101/4. We then can hope that the errors

are uncorrelated, so that they combine as steps in a random walk.

Then, the error in the product is γ
√

4 = 101/2, which is smaller than

the one-shot error of 10. So breaking an estimate into pieces reduces

the error, according to this order-of-magnitude analysis of error.

1.2 Cost of lighting Pasadena, California

What is the annual cost of lighting the streets of Pasadena, California?

Astronomers would like this cost to be huge, so that they could

argue that street lights should be turned off at night, the better to

gaze at heavenly bodies. As in Section 1.1, we guess a cost right away,

to train our intuition. So let’s guess that lighting costs $1 million

annually. This number is unreliable; by talking to our gut, we find that

$100,000 sounds okay too, as does $10 million (although $100 million
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Pasadena

A ∼ 100 km2

10 km

10 km

a ∼ (50 m)2

Figure 1.2. Map of Pasadena, Cali-
fornia drawn to order of magnitude.

The small shaded box is the area gov-

erned by one lamp; the box is not drawn

to scale, because if it were, it would be

only a few pixels wide. How many such

boxes can we fit into the big square? It

takes 10min to leave Pasadena by car,

so Pasadena has area A ∼ (10 km)2 =

108 m2. While driving, we pass a lamp

every 3 sec, so we estimate that there’s

a lamp every 50m; each lamp covers an
area a ∼ (50 m)2.

sounds too high).

The cost is a large number, out of the ordinary range of costs, so it

is difficult to estimate in one step (we just tried to guess it, and we’re

not sure within a factor of 10 what value is correct). So we divide and

conquer. First, we estimate the number of lamps; then, we estimate

how much it costs to light each lamp.

To estimate the number of lamps (another large, hard-to-guess

number), we again divide and conquer: We estimate the area of Pasa-

dena, and divide it by the area that each lamp governs, as shown in

Figure 1.2. There is one more factor to consider: the fraction of the

land that is lighted (we call this fraction f). In the desert, f is per-

haps 0.01; in a typical city, such as Pasadena, f is closer to 1.0. We

first assume that f = 1.0, to get an initial estimate; then we estimate

f , and correct the cost accordingly.

We now estimate the area of Pasadena. What is its shape? We

could look at a map, but, as lazy armchair theorists, we lie; we assume

that Pasadena is a square. It takes, say, 10 minutes to leave Pasadena

by car, perhaps traveling at 1 km/min; Pasadena is roughly 10 km in

length. Therefore, Pasadena has area A ∼ 10 km×10 km = 100 km2 =

108 m2. (The true area is 23mi2, or 60 km2.) How much area does each

lamp govern? In a car—say, at 1 km/min or ∼ 20m s−1—it takes 2

or 3 sec to go from lamppost to lamppost, corresponding to a spacing

of ∼ 50m. Therefore, a ∼ (50m)2 ∼ 2.5 · 103 m2, and the number of

lights is N ∼ A/a ∼ 108 m2/2.5 ·103 m2 ∼ 4 ·104.

How much does each lamp cost to operate? We estimate the cost

by estimating the energy that they consume in a year and the price per

unit of energy (divide and conquer). Energy is power× time. We can

estimate power reasonably accurately, because we are familiar with

lamps around the home. To estimate a quantity, try to compare it to

a related, familiar one. Street lamps shine brighter than a household

100W bulb, but they are probably more efficient as well, so we guess

that each lamp draws p ∼ 300W. All N lamps consume P ∼ Np ∼

4 · 104 × 300W ∼ 1.2 · 104 kW. Let’s say that the lights are on at

night—8 hours per day—or 3000 hours/year. Then, they consume 4 ·

107 kW–hour. An electric bill will tell you that electricity costs $0.08
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Figure 1.3. Fraction of Pasadena that

is lighted. The streets (thick lines) are

spaced d ∼ 100m apart. Each lamp,

spaced 50m apart, lights a 50m × 50m

area (the eight small, unshaded squares).

The only area not lighted is in the center

of the block (shaded square); it is one-

fourth of the area of the block. So, if
every street has lights, f = 0.75.

per kW–hour (if you live in Pasadena), so the annual cost for all the

lamps is $3 million.

Now let’s improve this result by estimating the fraction f . What

features of Pasadena determine the value of f? To answer this ques-

tion, consider two extreme cases: the desert and New York city. In the

desert, f is small, because the streets are widely separated, and many

streets have no lights. In New York city, f is high, because the streets

are densely packed, and most streets are filled with street lights. So

the relevant factors are the spacing between streets (which we call

d), and the fraction of streets that are lighted (which we call fl). As

all pedestrians in New York city know, 10 north–south blocks or 20

east–west blocks make 1 mile (or 1600m); so d ∼ 100m. In street

layout, Pasadena is closer to New York city than to the desert. So

we use d ∼ 100m for Pasadena as well. If every street were lighted,

what fraction of Pasadena would be lighted? Figure 1.3 shows the

computation; the result is f ∼ 0.75In New York city, fL ∼ 1; in Pasa-

dena, fL ∼ 0.3 is more appropriate. So f ∼ 0.75 × 0.3 ∼ 0.25. Our

estimate for the annual cost is then $1 million. Our initial guess is

unexpectedly accurate.

As you practice such estimations, you will be able to write them

down compactly, converting units stepwise until you get to your goal

(here, $/year). The cost is

cost ∼ 100 km2

︸ ︷︷ ︸

A

×
106 m2

1 km2
×

1 lamp

2.5 ·103 m2

︸ ︷︷ ︸

a

×
8 hrs

1 day
︸ ︷︷ ︸

night

×
365 days

1 year
×

$0.08

1 kW–hour
︸ ︷︷ ︸

price

×0.3 kW × 0.25

∼ $1 million.

(1.5)

It is instructive to do the arithmetic without using a calculator. Just

as driving to the neighbors’ house atrophies your muscles, using cal-

culators for simple arithmetic dulls your mind. You do not develop

an innate sense of how large quantities should be, or of when you

have made a mistake; you learn only how to punch keys. If you need

an answer with 6-digit precision, use a calculator; that’s the task for

which they are suited. In order-of-magnitude estimates, 1- or 2-digit

precision is sufficient; you can easily perform these low-precision cal-

culations mentally.

Will Pasadena astronomers rejoice because this cost is large? A

cost has units (here, dollars), so we must compare it to another, rele-

vant cost. In this case, that cost is the budget of Pasadena. If lighting

is a significant fraction of the budget, then can we say that the lighting

cost is large.

1.3 Pasadena’s budget
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What fraction of Pasadena’s budget is alloted to street lighting?

We just estimated the cost of lighting; now we need to estimate

Pasadena’s budget. First, however, we make the initial guess. It would

be ridiculous if such a trivial service as street lighting consumed as

much as 10 percent of the city’s budget. The city still has road con-

struction, police, city hall, and schools to support. 1 percent is a more

reasonable guess. The budget should be roughly $100 million.

Now that we’ve guessed the budget, how can we estimate it? The

budget is the amount spent. This money must come from somewhere

(or, at least, most of it must): Even the us government is moder-

ately subject to the rule that income ≈ spending. So we can estimate

spending by estimating income. Most us cities and towns bring in

income from property taxes. We estimate the city’s income by esti-

mating the property tax per person, and multiplying the tax by the

city’s population.

Each person pays property taxes either directly (if she owns land)

or indirectly (if she rents from someone who does own land). A typi-

cal monthly rent per person (for a two-person apartment) is $500 in

Pasadena (the apartments-for-rent section of a local newspaper will

tell you the rent in your area), or $6000 per year. (Places with fine

weather and less smog, such as the San Francisco area, have higher

monthly rents, roughly $1500 per person.) According to occasional

articles that appear in newspapers when rent skyrockets and interest

in the subject increases, roughly 20 percent of rent goes toward land-

lords’ property taxes. We therefore estimate that $1000 is the annual

property tax per person.

Pasadena has roughly 2 · 105 people, as stated on the road signs

that grace the entries to Pasadena. So the annual tax collected is

$200 million. If we add federal subsidies to the budget, the total bud-

get is probably double that, or $400 million. A rule of thumb in these

financial calculations is to double any estimate that you make, to

correct for costs or revenues that you forgot to include. This rule

of thumb is not infallible. We can check its validity in this case by

estimating the federal contribution. The federal budget is roughly

$2 trillion, or $6000 for every person in the United States (any recent

almanac tells us the federal budget and the us population). One-half

of the $6000 funds defense spending and interest on the national debt;

it would be surprising if fully one-half of the remaining $3000 went to

the cities. Perhaps $1000 per person goes to cities, which is roughly

the amount that the city collects from property taxes. Our doubling

rule is accurate in this case.

For practice, we cross-check the local-tax estimate of $200 mil-

lion, by estimating the total land value in Pasadena, and guessing

the tax rate. The area of Pasadena is 100 km2 ∼ 36mi2, and 1mi2 =

640 acres. You can look up this acre–square-mile conversion, or re-
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member that, under the Homestead Act, the us government handed

out land in 160-acre parcels—known as quarter lots because they were

0.25mi2. Land prices are exorbitant in southern California (sun, sand,

surf, and mountains, all within a few hours drive); the cost is roughly

$1 million per acre (as you can determine by looking at the homes-

for-sale section of the newspaper). We guess that property tax is 1

percent of property value. You can determine a more accurate value

by asking anyone who owns a home, or by asking City Hall. The total

tax is

W ∼ 36mi2

︸ ︷︷ ︸

area

×
640 acres

1mi2
×

$1 million

1 acre
︸ ︷︷ ︸

land price

× 0.01
︸︷︷︸

tax

∼ $200 million.

(1.6)

This revenue is identical to our previous estimate of local revenue;

the equality increases our confidence in the estimates. As a check on

our estimate, we looked up the budget of Pasadena. In 1990, it was

$350 million; this value is much closer to our estimate of $400 million

than we have a right to expect!

The cost of lighting, calculated in Section 1.2, consumes only 0.2

percent of the city’s budget. Astronomers should not wait for Pasa-

dena to turn out the lights.

1.4 Diaper production

How many disposable diapers are manufactured in the United States

every year?

We begin with a guess. The number must be in the millions—say,

10 million—because of the huge outcry when environmentalists sug-

gested banning disposable diapers to conserve landfill space and to

reduce disposed plastic. To estimate such a large number, we divide

and conquer. We estimate the number of diaper users—babies, as-

suming that all babies use diapers, and that no one else does—and

the number of diapers that each baby uses in 1 year. These assump-

tions are not particularly accurate, but they provide a start for our

estimation. How many babies are there? We hereby define a baby as a

child under 2 years of age. What fraction of the population are babies?

To estimate this fraction, we begin by assuming that everyone lives

exactly 70 years—roughly the life expectancy in the United States—

and then abruptly dies. (The life expectancy is more like 77 years,

but an error of 10 percent is not significant given the inaccuracies in

the remaining estimates.)

How could we have figured out the average age, if we did not al-

ready know it? In the United States, government retirement (Social

Security) benefits begin at age 65 years, the canonical retirement age.

If the life expectancy were less than 65 years—say, 55 years—then

so many people would complain about being short-changed by Social
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Area ∼
2

70
× 3 · 108 ∼ 107

Order-of-magnitude age distribution

2 70
0

4

True age distribution

Age (years)

People (106)

Figure 1.4. Number of people versus age

(in the United States). The true age dis-

tribution is irregular and messy; without

looking it up, we cannot know the area

between ages 0.0 years and 2.0 years
(to estimate the number of babies). The

rectangular graph—which has the same

area and similar width—immediately

makes clear what the fraction under

2 years is: It is roughly 2/70 ∼ 0.03.

The population of the United States is

roughly 3 ·108, so the number of babies is

∼ 0.03 × 3 ·108
∼ 107.

Security that the system would probably be changed. If the life ex-

pectancy were much longer than 65 years—say, if it were 90 years—

then Social Security would cost much more: It would have to pay

retirement benefits for 90− 65 = 25 years instead of for 75− 65 = 10

years, a factor of 2.5 increase. It would have gone bankrupt long ago.

So, the life expectancy must be around 70 or 80 years; if it becomes

significantly longer, expect to see the retirement age increased accord-

ingly. For definiteness, we choose one value: 70 years. Even if 80 years

is a more accurate estimate, we would be making an error of only 15

percent, which is probably smaller than the error that we made in

guessing the cutoff age for diaper use. It would hardly improve the

accuracy of the final estimate to agonize over this 15 percent.

To compute how people are between the ages of 0 and 2.0 years,

consider an analogous problem. In a 4-year university (which gradu-

ates everyone in 4 years and accepts no transfer students) with 1000

students, how many students graduate in each year’s class? The an-

swer is 250, because 1000/4 = 250. We can translate this argument

into the following mathematics. Let τ be lifetime of a person. We

assume that the population is steady: The birth and death rates are

equal. Let the rates be Ṅ . Then the total population is N = Ṅτ , and

the population between ages τ1 and τ2 is

N
τ2 − τ1

τ
= Ṅ(τ2 − τ1). (1.7)

So, if everyone lives for 70 years exactly, then the fraction of the

population whose age is between 0 and 2 years is 2/70 or ∼ 0.03

(Figure 1.4). There are roughly 3·108 people in the United States, so

Nbabies ∼ 3 ·108 × 0.03 ∼ 107 babies. (1.8)

We have just seen another example of skillful lying. The jagged curve

in Figure 1.4 shows a cartoon version of the actual mortality curve for
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the United States. We simplified this curve into the boxcar shape (the

rectangle), because we know how to deal with rectangles. Instead of

integrating the complex, jagged curve, we integrate a simple, civilized

curve: a rectangle of the same area and similar width. This proce-

dure is order-of-magnitude integration. Similarly, when we stud-

ied the Brinks armored-car example (Section 1.1), we pretended that

the cargo space was a cube; that procedure was order-of-magnitude

geometry.

How many diapers does each baby use per year? This number is

large—maybe 100, maybe 10,000—so a wild guess is not likely to be

accurate. We divide and conquer, dividing 1 year into 365 days. Sup-

pose that each baby uses 8 diapers per day; newborns use many more,

and older toddlers use less; our estimate is a reasonable compromise.

Then, the annual use per baby is ∼ 3000, and all 107 babies use 3·1010

diapers. The actual number manufactured is 1.6·1010 per year, so our

initial guess is low, and our systematic estimate is high.

This example also illustrates how to deal with flows: People move

from one age to the next, leaving the flow (dying) at different ages,

on average at age 70 years. From that knowledge alone, it is diffi-

cult to estimate the number of children under age 2 years; only an

actuarial table would give us precise information. Instead, we invent

a table that makes the calculation simple: Everyone lives to the life

expectancy, and then dies abruptly. The calculation is simple, and

the approximation is at least as accurate as the approximation that

every child uses diapers for exactly 2 years. In a product, the error is

dominated by the most uncertain factor; you waste your time if you

make the other factors more accurate than the most uncertain factor.

1.5 Meteorite impacts

How many large meteorites hit the earth each year?

This question is not yet clearly defined: What does large mean?

When you explore a new field, you often have to estimate such ill-

defined quantities. The real world is messy. You have to constrain

the question before you can answer it. After you answer it, even with

crude approximations, you will understand the domain more clearly,

will know which constraints were useful, and will know how to im-

prove them. If your candidate set of assumptions produce a wildly

inaccurate estimate—say, one that is off by a factor of 100,000—then

you can be sure that your assumptions contain a fundamental flaw.

Solving such an inaccurate model exactly is a waste of your time.

An order-of-magnitude analysis can prevent this waste, saving you

time to create more realistic models. After you are satisfied with your
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Reported meteor impact
a ∼ 10 m2

Earth’s surface
A ∼ 5 ·1014 m2

Locations where impact would
be reported, N ∼ 109

Figure 1.5. Large-meteorite impacts on

the surface of the earth. Over the sur-

face of the earth, represented as a circle,

every year one meteorite impact (black

square) causes sufficient damage to be

reported by Sky&Telescope. The gray

squares are areas where such a meteorite

impact would have been reported—for
example, a house or car in an indus-

trial country; they have total area Na ∼

1010 m2. The gray squares cover only

a small fraction of the earth’s surface.

The expected number of large impacts

over the whole earth is 1×A/Na ∼ 5·104,

where A ∼ 5 ·1014 m2 is the surface area

of the earth.

assumptions, you can invest the effort to refine your model.

Sky&Telescope magazine reports approximately one meteorite im-

pact per year. However, we cannot simply conclude that only one

large meteorite falls each year, because Sky&Telescope presumably

does not report meteorites that land in the ocean or in the middle

of corn fields. We must adjust this figure upward, by a factor that

accounts for the cross-section (effective area) that Sky&Telescope re-

ports cover (Figure 1.5). Most of the reports cite impacts on large,

expensive property such as cars or houses, and are from industrial

countries, which have N ∼ 109 people. How much target area does

each person’s car and living space occupy? Her car may occupy 4m2,

and her living space (portion of a house or apartment) may occupy

10m2. [A country dweller living in a ranch house presents a larger tar-

get than 10m2, perhaps 30m2. A city dweller living in an apartment

presents a smaller target than 10m2, as you can understand from

the following argument. Assume that a meteorite that lands in a city

crashes through 10 stories. The target area is the area of the building

roof, which is one-tenth the total apartment area in the building. In

a city, perhaps 50m2 is a typical area for a two-person apartment,

and 3m2 is a typical target area per person. Our estimate of 10m2 is

a compromise between the rural value of 30m2 and the city value of

3m2.]

Because each person presents a target area of a ∼ 10m2, the total

area covered by the reports is Na ∼ 1010 m2. The surface area of the

earth is A ∼ 4π×(6·106 m)2 ∼ 5·1014 m2, so the reports of one impact

per year cover a fraction Na/A ∼ 2 · 10−5 of the earth’s surface. We

multiply our initial estimate of impacts by the reciprocal, A/Na, and

estimate 5 · 104 large-meteorite impacts per year. In the solution, we

defined large implicitly, by the criteria that Sky & Telescope use.

1.6 What you have learned

You now know a basic repertoire of order-of-magnitude techniques:

Divide and conquer: Split a complicated problem into manageable

chunks, especially when you must deal with tiny or huge numbers,

or when a formula naturally factors into parts (such as V ∼ l ×

w × h).
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Guess: Make a guess before solving a problem. The guess may

suggest a method of attack. For example, if the guess results in a

tiny or huge number, consider using divide and conquer. The guess

may provide a rough estimate; then you can remember the final

estimate as a correction to the guess. Furthermore, guessing—and

checking and modifying your guess—improves your intuition and

guesses for future problems.

Talk to your gut: When you make a guess, ask your gut how it feels.

Is it too high? Too low? If the guess is both, then it’s probably

reliable.

Lie skillfully: Simplify a complicated situation by assuming what

you need to know to solve it. For example, when you do not know

what shape an object has, assume that it is a sphere or a cube.

Cross-check: Solve a problem in more than one way, to check

whether your answers correspond.

Use guerrilla warfare: Dredge up related facts to help you make

an estimate.

Punt: If you’re worried about a physical effect, do not worry about

it in your first attempt at a solution. The productive strategy is

to start estimating, to explore the problem, and then to handle

the exceptions once you understand the domain.

Be an optimist: This method is related to punt. If an assumption

allows a solution, make it, and worry about the damage afterward.

Lower your standards: If you cannot solve the entire problem as

asked, solve those parts of it that you can, because the subproblem

might still be interesting. Solving the subproblem also clarifies

what you need to know to solve the original problem.

Use symbols: Even if you do not know a certain value—for exam-

ple, the energy density stored in muscle—define a symbol for it.

It may cancel later. If it does not, and the problem is still too

complex, then lower your standards.

We apply these techniques, and introduce a few more, in the chapters

to come. With a little knowledge and a repertoire of techniques, you

can estimate many quantities.

1.7 Exercises

◮ 1.1 Rewriting

Estimate the radius of the earth. Prove that the earth is (a) huge and

(b) tiny, by choosing appropriate units for the radius.

◮ 1.2 Batteries

What is the cost of energy from a 9V battery? From a wall socket

(the mains)?

◮ 1.3 Human warmth

How much heat do you generate just sitting around?
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◮ 1.4 Fuel economy

What is the fuel consumption, in passenger–miles per gallon, of a 747

jumbo jet?

◮ 1.5 Bandwidth

What is the data rate (bits/s) of a 747 filled with DVD’s crossing the

Atlantic?

◮ 1.6 Pit spacing

What is the spacing of the pits on a CD-ROM disc? Extra: Test your

estimate with a simple experiment.
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