
1 The Swendsen–Wang method

Several enhancements of Monte Carlo methods are based on a remarkable trick: take
a big and difficult problem, and replace it by an even bigger problem that contains the
first problem; then solve the bigger problem with methods that were not applicable
to the first.

The Swendsen–Wang method takes a spin system such as
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and replaces it by a bigger system that contains both the N original spin variables
and M additional ‘bond’ variables, where M is the number of non-zero couplings Jnn′

in the original spin system. All the ideas that follow are from Swendsen and Wang
(1987).

The extended Ising model

Let’s represent the original Ising model by the product of factors

P (x) =
1

Z

M
∏

m=1

fm(xm), (2)

where each factor fm(xm) depends on just two of the spins, say xn and xn′ :

fm(xm) = f(xn, xn′) = exp(Jnn′xnxn′). (3)

In a standard Ising model, all the couplings between neighbouring spins Jnn′ are equal
to a single positive number, J . Later, we will generalize our description to arbitrary
spin systems.

We extend this model by introducing M additional ‘bond’ variables, d.
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spins and bonds
We define a joint distribution that couples the spins to the bonds,

P (x,d) =
1

Z ′

M
∏

m=1

gm(xm, dm), (4)

in such a way that

(a) The marginal distribution of x,
∑

d P (x,d), is equal to the Ising distribution
(2);

(b) the conditional distributions P (x|d) and P (d|x) are both simple to sample
from.

Each bond variable has two possible states: 1 (also known as ‘open’ or ‘connected’)
and 0 (‘closed’ or ‘disconnected’). The factor gm(xm, dm) is defined by the following



eight values:

gm(xm, dm) =































dm =0 dm =1
xn′ =0 xn′ =1 xn′ =0 xn′ =1

xn =0 e−J e−J eJ − e−J 0

xn =1 e−J e−J 0 eJ − e−J ,

(5)

The distribution of x and d is unchanged if we rescale any factor by any constant; it
will be convenient to introduce an alternative notation for the factor gm, rescaling it
by eJ , and defining

p ≡ 1 − e−2J . (6)

The rescaled factor is:
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xn =0 1 − p 1 − p p 0

xn =1 1 − p 1 − p 0 p,

(7)

The extended model can thus be written as

P (x,d) =
1

Z
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m

gm(xm, dm) =
1

Z̃

∏
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g̃m(xm, dm). (8)

The first partition function Z is identical to the partition function of the original Ising
model. The second is

Z̃ = Ze−MJ (9)

In the case where the original spins are connected in a rectangular grid, the factor
graph for the extended model looks like this:
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1.1 Sampling from the extended model by Gibbs sampling

The conditional distributions P (x|d) and P (d|x) are as follows:
P (x|d) – the bonds connect the spins into a number of clusters (connected com-

ponents); all spins in a cluster must adopt the same state as each other; the states
±1 are selected with equal probability.

P (d|x) – conditional on the spins, the bonds are independent. If the two spins
surrounding a bond are equal (xn = xn′), set the bond dm to 1 with probability p (see
equation (6)); otherwise set it to zero.



In the case of a rectangular grid, this Gibbs sampling algorithm mixes very rapidly.
The following figures illustrate Gibbs sampling. Spin states up and down are

shown by filled and empty circles. Bond states 1 and 0 are shown by thick lines and
thin dotted lines. We start from a state with five connected components. (Remember
that isolated spins count as connected components, albeit of size 1.)

First, let’s update the bonds The forbidden bonds are highlighted

Bonds are forbidden from forming wherever the two adjacent spins are in opposite
states. The bonds that are not forbidden are set to the 1 state with probability p.

After updating the bonds Now we update spins Update bonds again

1.2 Other properties of the extended model

We already mentioned that the partition function Z is the same as that of the Ising
model.

The marginal P (x) is correct, because when we sum the factor gm over dm, we get
fm. Summing over dm is easy because it appears in only one factor.

OK, we’ve summed out d and obtained the Ising model. What if we sum out x?
The marginal P (d) is called the random cluster model. Summing over x for given

d, all factors are constants. The number of states is 2number of clusters. Thus
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where c(d) is the number of connected components in the state d. Isolated spins
whose neighbouring bonds are all zero count as single connected components.

The random cluster model can be generalized by replacing the number 2 by a
parameter q:

P (q)(d) =
∏

m

(
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)

qc(d) (11)

The random cluster model can be simulated directly, just as the Ising model can
be simulated directly; but the S–W method, augmenting the bonds with spins, is
probably the most efficient way to simulate the model. For integer values of q, the
appropriate spin system is the ‘Potts model’, the generalization of the Ising model
from 2 spin states to q.



2 Swendsen–Wang for a general spin system

We now include a bias hn at each spin. And we allow the couplings J to be positive
or negative.

Assuming that the original coupling associated with bond m, Jnn′, is positive, the
factor gm(xm, dm) is defined by the following eight values:
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As before we can introduce a parameter pm ≡ 1− e−2J
nn

′ and write a rescaled factor:
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If Jnn′ is negative, we define the factor gm thus:
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Two spins surrounding such a bond must be in opposite states if the bond is connected
(dm = 1).

When each cluster is updated, the total of the associated biases hn is taken into
account when determining the probability of the two states.

2.1 How well does it work?

The Swendsen–Wang method often mixes much better than simple Markov chains
such as Gibbs sampling (that is, single-spin updates, also known as the heat bath
method).

To be specific, consider the simple two-dimensional rectangular Ising model with
positive coupling between neighbours. At high temperatures, spins are roughly in-
dependent, so any method works fine. As the temperature is reduced to the critical
temperature, typical states have increasingly long correlation-length, and ordinary
Gibbs sampling suffers from ‘critical slowing-down’ – it takes a very long time to ob-
tain independent samples. Below the critical temperature, typical states fall into two
sets: mainly-up, and mainly-down. The frequency with which ordinary Gibbs sam-
pling gets between those two sets is exponentially small. In contrast, Swendsen–Wang
sampling mixes fast at all temperatures, above, at, or below the critical temperature.
Near the critical temperature, most of the spins are in large clusters, so a single flip
of sign of one cluster changes a large number of spins in a correlated way. At very
low temperatures, almost all spins are in one giant connected cluster.

Swendsen–Wang sampling isn’t a cure-all for spin systems, however. It has dif-
ficulty with systems that have frustrations. The anti-ferromagnetic hexagonal Ising



model, for example, is full of frustrations, and it has non-zero entropy at absolute
zero. If we use the Swendsen–Wang method for negative coupling described above,
at very low temperatures, a typical state will have one third of the bonds forbidden
and most of the other two thirds present. Those two thirds are likely to connect
almost all the spins into a single giant connected component. The only change to the
spins that can thus happen is a flip in sign of all spins. Such a move is fine for the
very-low-temperature ferromagnet, which only has two states; but it does not do a
good job of exploring the frustrated distribution, which has many other equal-energy
states accessible to it. Swendsen–Wang does not propose moves that enable rapid
exploration.

References

Swendsen, R. H., and Wang, J.-S. (1987) Nonuniversal critical dynamics in
Monte Carlo simulations. Physical Review Letters 58: 86–88.

David J.C. MacKay (2004).

This is an addition to Information Theory, Inference, and Learning Algorithms (Cam-
bridge Univ. Press, 2003), which is available online from

http://www.inference.phy.cam.ac.uk/mackay/itila/


