
Solution to Exercise 5.29, page 103, Information Theory, Inference, and Learning

Algorithms, by David MacKay.

Data Compression with Huffman codes

Consider a binary file that is very sparse – only f = 1% of the bits are 1s. How can
we compress it into a smaller file? And how much compression should we expect is
possible?

One compression method is to count the number of runs of zeroes between each
successive pair of ones. Then we can encode these outcomes {r}, the run-lengths,
using an optimal symbol code.

In principle, any one run of zeroes could have a very long length. Rather than
assume really long runs will not happen, we would prefer to have a well-defined
method for handling long runs. One idea is to pick a maximum run length of zeroes
(without any one) and devote one of the leaves of our Huffman tree to encoding pure
zeroes.

What should we choose as this maximum run length? Any value will give a valid
code, but we are interested in minimizing the expected length L.

As we vary the maximum run length, rmax, the ratio of the expected length to the
entropy, L/H, varies as shown in the figure below.

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 30 60 90 120 150 180

 1

 1.02

 1.04

 1.06

 20 40 60 80 100 120 140 160 180

If we use a maximum runlength greater than 40, then we get within 2% of per-
fect compression. But the efficiency doesn’t decrease monotonically with rmax. The
efficiency is closest to 1 when rmax ' 69, 2 × 69, . . . Can you see why? [Hints: what
is the value of 0.9969? ln 2 ' 0.69.]

For much larger values of rmax, does Huffman coding do any better?

Source code implementing this compressor and other compression algorithms is
available at:

http://www.inference.phy.cam.ac.uk/mackay/itprnn/code/c/compress/

This is an addition to Information Theory, Inference, and Learning Algorithms

(Cambridge Univ. Press, 2003), which is available online from:

http://www.inference.phy.cam.ac.uk/mackay/itila/

